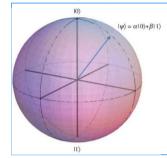


Computação sem Fronteiras 2019

Workshop em computação quântica

Ana Neri


Verdadeiros e falsos

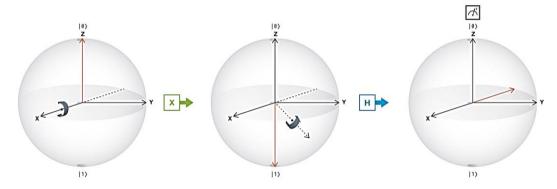
Verdadeiro					Falso				
1							••••		
2		O					••••		
3							••••		
4		O			••••		••••		
5									
6							••••		
7		O					••••	O	

Como é que posso trabalhar com o Computador Quântico?

Um computador quântico funciona naquilo que os programadores chamam baixo nível, isto é, trabalhamos muito próximos da máquina enviando para o computador quântico o tipo de portas lógicas quânticas que queremos usar.

Quando o qubit passa numa porta lógica quântica acontece uma certa rotação.

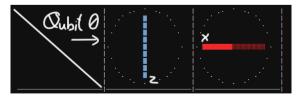
Qubit


Partícula quântica que pode estar num estado 0, num estado 1 ou pode estar em ambos os estados ao mesmo tempo (estado de sobreposição).

Não é determinístico.

Para termos um qubit podemos usar uma partícula de luz – fotão – ou o spin de um átomo, por exemplo.

Quando eu ler o estado vou fazê-lo colapsar para o estado 0 ou para o estado 1. Isso significa que uma parte da informação se perdeu.


O que vemos aqui são dois exemplos de portas lógicas: porta lógica X e porta lógica de Hadamard.

Para ganhares alguma intuição de como isto funciona vamos jogar Hello Quantum: https://bit.ly/2J54pNA

Calma! Não precisas de saber computação quântica para avançares neste jogo. É apenas um puzzle que dá intuição. Vamos começar pelo nível um no Main Tutorial.

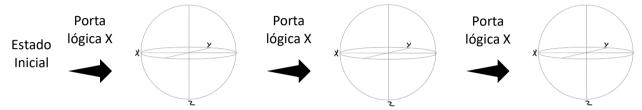
Neste jogo vão ter uma grelha e uma tarefa. O objetivo é completar a tarefa com programação quântica.

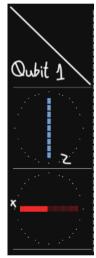
Começando pelo qubit_0. A informação sobre o estado deste qubit encontra-se nas primeiras duas circunferências. Cada circunferência tem uma barra, que pode estar ON, OFF ou qualquer coisa no meio.

De forma a que isto faça um pouco de mais sentido vamos ver o que significa isto numa esfera de Bloch. O estado que temos nesta configuração corresponde ao ponto púrpura.

Porquê uma esfera?

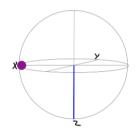
Para trabalharmos com números complexos.

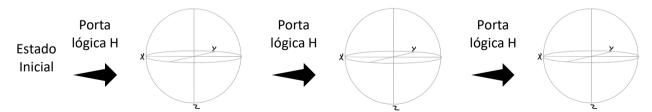

O que são números complexos?


São números com parte real (a azul no jogo) e com parte imaginária (a vermelho no jogo).

E o que é que são números imaginários?

Os números imaginários é matéria do 12º ano. Muito resumidamente, tenta resolver: $x^2=-1$. Não é fácil, não existem raízes negativas, por isso criou-se uma unidade imaginária i que nos permite resolver estas equações impossíveis. Por definição $i=\sqrt{-1}$ logo a resposta seria x=i.


O primeiro nível pede-te para usares a porta lógica X. A imagem anterior mostra-te o que a porta lógica faz. **Assinala** onde está o estado após cada utilização da porta lógica X.


No nível 2 vamos ver o qubit_1, situado na primeira coluna. O estado é exemplificado da mesma fora. A circunferência de baixo mostra o que está no eixo X e a circunferência de cima o que está no eixo Z. O exercício é exatamente o mesmo. Repara que aplicar a porta lógica X a este estado não afeta em nada a barra vermelha.

No nível 5 é te apresentado uma nova porta lógica h (Hadamard). Como já viste na primeira imagem sobre portas lógicas quânticas esta porta vai trazer o estado que está no eixo Z para o eixo X (e vice-versa).

O estado inicial do nível 5 pode ser visto na imagem à esquerda.

Assinala nas esferas de Bloch abaixo o que se está a passar com o estado quando usas a porta lógica de Hadarmad.

No nível 6 pedem que uses a porta X quando a barra azul se encontra a meio, o resultado é:

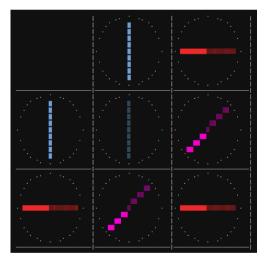
Se tentarmos extrair resultado de um estado com a barra azul a meio vamos ter uma probabilidade de 50% estado 0 e 50% estado 1. É a **sobreposição**!

Sobreposição:

Vamos fazer um exercício mental com o gato de Schrödinger.

O gato é colocado numa caixa com um material radioativo, que pode ou não soltar partículas. Se o material soltar partículas um contador vai medir a sua presença e acionar um martelo que quebra um frasco de veneno, matando o gato imediatamente.

A probabilidade de o gato estar morto ao fim de uma hora é de 50%.



Como não podemos ter a certeza até abrirmos a caixa dizemos que o gato pode ser considerado vivo e morto durante essa hora. Por outras palavras o estado está em todos os estados possíveis até ser observado.

Nível 7 é te apresentado a porta lógica Z. O que é que ela faz quando...

barra azul cheia e barra vermelha a meio	
barra azul a meio e barra vermelha cheia	
barra azul a meio e barra vermelha vazia	
barra azul vazia e barra vermelha a meio	

No nível 9 são te apresentadas as quatro caixas do meio. Apesar do jogo te pedir para as ignorares durante este nível vamos já dar uma pequena explicação.

As caixas do meio representam a relação entre o qubit 0 e 1.

A caixa azul do meio verifica o estado das caixas azuis dos qubits, isto é, se a caixa azul do meio estiver vazia então as caixas azuis do qubits estão de certeza em concordância e se a caixa azul do meio estiver cheia então as caixas azuis dos qubits estão de certeza em discordância.

A caixa vermelha do meio está a verificar a relação entre as outras caixas vermelhas e as caixas purpuras as relações entre a caixa azul de um qubits e a caixa vermelha de outro.

Nota que agora as portas lógicas que usamos num qubit influenciam esse qubit e a relação que ele tem com o outro qubit!

Por exemplo, o gate H aplicado ao qubit 0 vai trocar as colunas.

Deves notar que os gates aplicados a qubit 0 influenciam as colunas e a os gates aplicados a 1 influenciam as linhas.

Repara no que está acima da grelha do jogo.

Quando aplicas os gates estás na verdade a criar um programa quântico que pode de facto ser experimentado num computador quântico.

A IBM tem computadores quântico que podes usar a partir de casa com 5 e 16 qubits. Cria a tua conta em IBM Q Experience.

Gate CZ aparece pela primeira vez no nível 18. A porta lógica CZ, pode também ser denominada, Control-Z. O nome é dado assim porque um qubit está a controlar o outro. Consideremos que o qubit de controlo é 0 e o qubit 1 é o alvo: Se a caixa azul do qubit 0 estiver **on** então z vai ser aplicado ao qubit 1, caso contrário nada acontece ao qubit 1.

Antes do CZ

Depois do CZ

Qubit controlo	Qubit alvo	Qubit controlo	Qubit Alvo
Azul cheio	Vermelho cheio	Azul cheio	Vermelho vazio
Azul cheio	Vermelho vazio	Azul cheio	Vermelho cheio
Azul vazio	Vermelho cheio	Azul vazio	Vermelho cheio
Azul vazio	Vermelho vazio	Azul vazio	Vermelho vazio

Este tipo de portas lógicas é responsável por entrelaçamento!

Entrelaçamento

Continuando com o coitado do gato. Imagina que desta vez tens dois gatos e duas caixas armadilhadas. Estes dois gatos estão entrelaçados.

Eu levo uma das caixas com um gato para minha casa (caixa A) e tu levas a outra (caixa B). Se não o quiseres levar para casa podes mandá-lo para o outro lado do universo.

Passado algum tempo eu abro a minha caixa (A) descubro que o gato que eu tinha morreu. Mas pelo menos sei que na outra caixa (B) o gato está vivo! Imediatamente e sem precisar de te ligar.

Como o entrelaçamento não parece fazer sentido nenhum, talvez o melhor seja veres a ação deste gate como algo que troca os quadrados vermelhos pelos quadrados purpura.

Se estiveres a ler o texto que a aparece no jogo no nível 22 deves ter chegado à conclusão que o gate CZ e o gate H podem ser usados para chegar a um gate CX.

Como?						
O que é CX? (podes explicar com uma tabela como a do CZ)						

No nível 27 deves encontrar uma rotação no eixo dos Y a que dão o nome q. Em vez de ligar e desligar uma das barras esta rotação é menor e vais precisa de mais gates para conseguires desligar uma das barras.

Quando juntas as barras azul e vermelho passas a ter um sinal *. Quando usas a porta lógica q é o símbolo * que estás a mover.

Nível 31 temos o Gate qdg que faz uma rotação contrária a q.