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Tool-Chain

GHCi Quipper Quiskit IBM Q

I GHCi - depending on the number of resources available in the
target hardware, the monadic quantamorphisms are used to
generate finite, unitary matrices;

I Quipper - this tool generates quantum circuits from the
unitary matrices;

I QISKit1 - the quantum circuit generated by Quipper is passed
to this Python interface;

I IBM-Q - the actual code generated by QISKit runs on the
actual, physical quantum device.

1Version < 6.0.



GHCi

Two kinds of quantamorphisms:

I For-loops (qfor) – controlled by natural numbers

I “Folds” (qfold) — controlled by finite lists

For quantum circuit generation we need to define a finite support
for the matrix we want to generate and pass along to Quipper.

First example — a qfor with control qubits {00, 01, 10, 11} — 3
cicles at maximum.

The matrix for qfor X and mqfor H is given by
f : B3 × B→ B3 × B.



GHCi

The in a completely classic program the code implemented in
Haskell is:
qfor :: (b -> b) -> (Int, b) -> (Int, b)

qfor f (0,b) = (0,b)

qfor f (n+1,b) = let (m,b’) = qfor f (n, f b) in (m+1,b’)

When using a quantum gate it is important to use a monadic
implementation:
mqfor :: (Monad m) => (b -> m b) -> (Int, b) -> m (Int,

b)

mqfor f (0,b) = return (0,b)

mqfor f (n+1,b) = do b’ <- f b ; (m,b’’) <- mqfor f (n,

b’); return (m+1,b’’)

The monadic encodings of quantamorphisms given above are in
one-to-one correspondence with unitary matrices describing quantum
computations.
Running such monadic functions is a form of simulating such
computations.



GHCi
Quantamorphism qfor X :
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(0,False) 1 0 0 0 0 0 0 0
(0,True) 0 1 0 0 0 0 0 0
(1,False) 0 0 0 1 0 0 0 0
(1,True) 0 0 1 0 0 0 0 0
(2,False) 0 0 0 0 1 0 0 0
(2,True) 0 0 0 0 0 1 0 0
(3,False) 0 0 0 0 0 0 0 1
(3,True) 0 0 0 0 0 0 1 0
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Quipper
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Figure: Quipper circuit resulting
from matrix of the
quantamorphism for X .
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Figure: Quipper circuit resulting
from matrix of the monadic
quantamorphism for H .



Quipper
Decompostion & Translation “QuipperToQiskit”2

Figure: Decomposing our gates is not trivial, thus we choose let Quipper
do the decomposition of the second case. (Figure from [tea18]).
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2public tool [NR18b].



QISKit
Implementation

Figure: Circuit from qfor X .

Figure: Circuit from mqfor H .



QISKit
Why swap q0 with q2 in qfor X ?

I Coupling map of ibmqx4.

Q3

Q4

Q2

Q1

Q0

Figure: Coupling map of IBM Q 5 Tenerife V1.x.x (ibmqx4).



QISKit
Decomposition to QASM simulator - qfor X

The circuit from qfor X still needs decomposition to run a
simulator:

Figure: Decomposition of a Toffoli gate (Figure from [tea18])

Figure: Circuit from qfor X .



QISKit
Decomposition to QASM simulator - mqfor H

When running in IBM Q the gates T , T † , S , S† , Z and H are
implemented with unitary gates:

U(θ, φ, λ) =

[
cos θ

2 −e iλ sin θ
2

e iφ sin θ
2 e iλ+iφ cos θ

2

]
(3)

IBM Q has u1(λ) = U(0, 0, λ), u2(φ, λ) = U(0, φ, λ) and
u3(θ, φ, λ) = U(θ, φ, λ).



QISKit
Expected results - QISKit simulations

Figure: Circuit from qfor X with the
initial state at |000〉.

Figure: Circuit from qfor X where the
initial state of the control qubits is bell
state.

Figure: Circuit from mqfor H with the
initial state at |000〉.

Figure: Circuit from mqfor H with the
with the control qubits at |11〉.



QISKit
Decompostion to ibmqx4 device

Figure: Circuit from qfor X

Figure: Circuit from mqfor H



QISKit
Results - execution in ibmqx4

Figure: Circuit from qfor X with the
initial state at |000〉.

Figure: Circuit from qfor X where the
initial state of the control qubits is bell
state.

Figure: Circuit from mqfor H with the
initial state at |000〉.

Figure: Circuit from mqfor H with the
with the control qubits at |11〉.



QISKit
Why the errors?

I Number of gates;

I There may be some bugs in decomposing to a specific device.

The simulations are made to work in a very similar fashion to the
quantum devices which leads to the conclusion that the theoretical
work is correct, but the devices still have a lot to improve.3

3Details in [NR18a].



QISKit
Important notes

Fortunately, there is evidence that improvements are happening
fast:

Figure: The output of mqfor H
with control qubits in |1〉 in ibmqx4
device.

Figure: The output of mqfor H
with control qubits in |1〉 in
ibmq 20 tokyo device.



Conclusions

I The tool-chain is useful but can still be improved;

I Our programs are correct by construction;

I The error rate is high but has been decreasing a lot.
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